Raman and AFM-IR chemical imaging of stratum corneum model membranes

Author:

Paz Ramos Adrian1,Gooris Gert2,Bouwstra Joke2,Molinari Michael3,Lafleur Michel1

Affiliation:

1. Department of Chemistry, Université de Montréal, Montréal, QC H3C 3J7, Canada.

2. Department of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Einsteinweg 55, 2333 CC Leiden, the Netherlands.

3. Institut de chimie et biologie des membranes et des nano-objets, CNRS UMR 5248, Université de Bordeaux, IPB, 33600 Pessac, France.

Abstract

Stratum corneum (SC), the outermost layer of the epidermis, is the primary barrier to percutaneous absorption. The diffusion of substances through the skin occurs through the SC lipid fraction, which is essentially constituted of an equimolar mixture of ceramides, free fatty acids, and cholesterol. The lipid constituents of SC are mainly forming continuous multilamellar membranes in the solid/crystalline state. However, recent findings suggest the presence of a highly disordered (liquid) phase formed by the unsaturated C18 chain of ceramide EOS, surrounded by a highly ordered lipid environment. The aim of the present work was to study the lipid spatial distribution of model SC membranes composed of ceramide EOS, ceramide NS, a mixture of free fatty acids, and cholesterol, using Raman microspectroscopy and AFM-IR spectroscopy techniques. The enhanced spatial resolution at the tens of nanometers scale of the AFM-IR technique revealed that the lipid matrix is overall homogeneous, with the presence of small, slightly enriched, and depleted regions in a lipid component. No liquid domains of ceramide EOS were observed at this scale, a result that is consistent with the model proposing that the oleate nanodrops are concentrated in the central layer of the three-layer organization of the SC membranes forming the long periodicity phase. In addition, both Raman microspectroscopy and AFM-IR techniques confirmed the fluid nature of the unsaturated chain of ceramide EOS while the rest of the lipid matrix was found highly ordered.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3