Author:
Deniaud Christophe,Cheng JJ Roger
Abstract
This paper reviews the different shear design methods found in the literature for reinforced concrete beams strengthened externally with fibre reinforced polymer (FRP) sheets and compares the adequacy of each method by using the test results from the University of Alberta. The FRP shear design methods presented include the effective FRP strain and the bond mechanism criteria, the strut-and-tie model, the modified compression field theory, and a mechanical model based on the strip method with shear friction approach. Sixteen full-scale T-beam test results were used in the evaluation. Two web heights of 250 and 450 mm and two ready mix concrete batches of 29 and 44 MPa were used in the test specimens. Closed stirrups were used with three spacings: 200 mm, 400 mm, and no stirrups. Three types of FRP were used to strengthen externally the web of the T-beams: (i) uniaxial glass fibre, (ii) triaxial (0/60/60) glass fibre, and (iii) uniaxial carbon fibre. The results showed that the mechanical model using the strip method with shear friction approach evaluates better the FRP shear contribution. The predicted capacities from this mechanical model are also found conservative and in excellent agreement with the test results.Key words: beams, carbon fibres, composite materials, fibre reinforced polymers, glass fibres, rehabilitation, reinforced concrete, shear strength, sheets, tests.
Publisher
Canadian Science Publishing
Subject
General Environmental Science,Civil and Structural Engineering
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献