Singing sands, booming dune sands, and the stick–slip effect

Author:

Patitsas A.J.1

Affiliation:

1. Laurentian University, Department of Physics and Astronomy, Sudbury, ON P3E 2C6, Canada.

Abstract

The origin of the acoustic and seismic emissions from impacted singing grains and from avalanching dune sand grains is sought in modes of vibration in discreet grain columns. It is postulated that when the grains in a column are pressed together and forced to slide over one another, elastic shear bands are formed at the contact areas with distinct elastic moduli. Such contact shear bands would have implications in the formulation of the Hertz–Mindlin contact theory. The assembly of all grain columns below the impacting pestle forms the slip (slide) shear band. The transfer of energy from the pestle to the modes of vibration in such columns is effected by the stick–slip effect. The intense collective vibration of all columns in the slip shear band results in the familiar musical sound. The concept of grain flowability is used to justify the disparity between the acoustic emissions from impacted singing grains and from avalanching booming dune sand grains. The concept of grain columns is assumed to apply in the freely avalanching sand band, but with longer length to justify the lower frequencies. This approach predicts frequency spectra comprising a low-frequency content and a dominant frequency with its harmonics in agreement with the experimental evidence. Additionally, it can account for the low-frequency vibration evoked when booming sand flows through a funnel, with implications in the understanding of grain silo vibrations. It is argued that sand grains do not sing or boom because the stick–slip effect in not applicable in the contact shear bands.

Publisher

Canadian Science Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sound mechanics from squeaky and booming dune sands;Acoustical Science and Technology;2022-11-01

2. Snow sounds when rubbing or impacting a snow bed;Canadian Journal of Physics;2015-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3