Abstract
The value of the secant shear modulus (G) of sand measured in cyclic tests reduces as the amplitude of cycling increases. As a first approximation, it is assumed that the curve joining the extreme points of stress–strain (τ–γ) loops of different amplitudes (a so-called "backbone curve") is hyperbolic. The shear strength (τmax) of sand is directly proportional to the mean effective confining pressure (p′), whereas the maximum shear modulus (G0) is proportional to (p′)n, with n being between 0.4 and 0.5. Based on these assumptions, it is shown that at the same shear strain level, different G/G0 values should be expected at different p′ values. One of the features of a hyperbolic τ–γ curve is that there is a unique linear relationship between G/G0 and normalized shear stress level (defined as τ/τmax), independent of p′. Therefore, considering the normalized shear stress level rather than the shear strain level may be a more logical and unifying way of examining the variation in G/G0. Key words : shear modulus, hyperbolic stress–strain curve, pressuremeter test.
Publisher
Canadian Science Publishing
Subject
Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献