Patterning and cell differentiation inHydra: novel genes and the limits to conservation

Author:

Bosch Thomas C.G,Khalturin Konstantin

Abstract

In the last few years more than 100 genes have been identified from Hydra, and well over 80 have been characterized. Since most genes are homologs of genes found in bilaterians, the genetic mechanisms for axial patterning and cell differentiation are evolutionarily conserved. This constitutes something of a paradox. If key developmental-control genes are the same in Hydra and all other organisms, how does one account for the marked differences in development and morphology of the different animal groups? How are taxon-specific features encoded? To examine whether in Hydra, in addition to conserved mechanisms, there are genetic features that control uniquely taxon-specific (Hydra/Hydrozoa/Cnidaria) aspects, we used an experimental strategy that does not require sequence data from related taxa. By means of this unbiased ("knowledge-independent") approach we have identified genes from Hydra encoding signal molecules and effector genes with no sequence similarity to genes in other organisms. When tested functionally, the novel genes were found to be essential for axial patterning and differentiation of Hydra-specific characteristics. Experimental analysis of the cis-regulatory apparatus of these novel genes reveals target sites for novel trans-acting factors. The use of unbiased screening approaches for several other organisms also reveals a large number of novel and taxon-specific genes of as yet unknown function. Thus, comparative data alone may not be sufficient for gaining a full understanding of the development of taxon-specific characteristics.

Publisher

Canadian Science Publishing

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3