Unveiling the paradoxical nature of myelodysplastic syndromes (MDS): Why hypercellular marrow strongly favors accelerated apoptosis

Author:

Das Madhurima1,Chaudhuri Samaresh23,Law Sujata1

Affiliation:

1. Stem Cell Research and Application Unit, Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, 108 C R Avenue, Kolkata, West Bengal, India, 700073.

2. Department of Microbiology, Biotechnology & Molecular Biology, University of Kalyani, Kalyani, West Bengal, India.

3. Biotechnology Department, West Bengal University of Technology, Kolkata, India.

Abstract

The pathogenesis of bone marrow failure in myelodysplastic syndromes (MDS) is an unresolved mystery. MDS causes peripheral blood cytopenias and increased bone marrow cellularity. This apparent paradox has been interpreted as a sign of intramedullary destruction of a substantial portion of the developing hematopoietic cells by apoptosis. The present study aimed to delineate the exact mechanistic relationship between the bone marrow hypercellularity and the accelerated apoptosis in an N-ethyl-N-nitrosourea (ENU)-induced experimental MDS mouse model. The observations made so far clarify the quantitative and qualitative changes that occur in the bone marrow microenvironment through cell cycle analysis, especially involving the telomerase reverse transcriptase (TERT) and p53 expression patterns. The survival fate of the bone marrow cells were observed by measuring the expression level of some intracellular protein molecules like apoptosis signal-regulating kinase 1 (ASK-1), c-Jun N-terminal kinase (JNK), and cleaved caspase-3 of the extrinsic pathway toward apoptosis. We found myelodysplasia damage occurs within one or more multipotent progenitor populations resulting in uncontrolled cellular proliferation within the MDS bone marrow. Then, due to homeostatic balance, this high cellular burden is minimized by activating the apoptosis pathway. As a result, the peripheral blood suffers cellular deprivation. This study can throw some light on the mechanism of disease progression and also help to reveal the paradoxical nature of the disease.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3