Phenotypic alteration of limbal niche–associated limbal epithelial stem cell deficiency by ultraviolet-B exposure–induced phototoxicity in mice

Author:

Das Prosun1,Pereira Jacintha Archana1,Chaklader Malay1,Law Aditya1,Bagchi Ketaki1,Bhaduri Gautam1,Chaudhuri Samaresh1,Law Sujata1

Affiliation:

1. Stem Cell Research and Application Unit, Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, 108 C R Avenue, Kolkata-700073, India.

Abstract

Good vision requires a healthy cornea, and a healthy cornea needs healthy stem cells. Limbal epithelial stem cells (LESCs) are a traditional source of corneal epithelial cells and are recruited for the continuous production of epithelium without seizing throughout an animal's life, which maintains corneal transparency. Like the maintenance of other adult somatic stem cells, the maintenance of LESCs depends on the specific microenvironmental niche in which they reside. The purpose of this study was to determine the microenvironmental damage associated with LESCs fate due to ultraviolet (UV)-B exposure in a mouse model. Structural alteration and deregulation of the stem cell and its neighboring niche components were observed by using clinical, morphological, explant culture study, and flowcytometric analysis, which demonstrated that the limbal microenvironment plays an important role in cornea-related disease development. In UV-exposed mice, overexpression of vascular endothelial growth factor receptor 2 indicated neovascularization, decreased CD38 expression signified the alteration of limbal epithelial superficial cells, and the loss of limbal stem cell marker p63 indicated limbal stem cell deficiency in the limbal vicinity. We concluded that LESC deficiency diseases (LESCDDs) are associated with pathophysiological changes in the LESC niche, with some inhibitory interception such as UV-B irradiation, which results in corneal defects.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3