Brans–Dicke theory and thermodynamical laws on apparent and event horizons

Author:

Bhattacharya Samarpita1,Debnath Ujjal1

Affiliation:

1. Department of Mathematics, Bengal Engineering and Science University, Shibpur, Howrah-711 103, India.

Abstract

In this work, we describe the Brans–Dicke (BD) theory of gravity and give a particular solution by choosing a power law form for the scalar field [Formula: see text] and constant ω. If we assume that the first law of thermodynamics and the entropy formula hold on the apparent horizon, then we recover the Friedmann equations. Next, assuming the first law of thermodynamics holds, the validity conditions of the generalized second law (GSL) on the event horizon are presented. If we impose the entropy relation on the horizon, without using the first law, then we also obtain the validity condition of the GSL on the event horizon. The validity of the GSL completely depends on the BD model scalar field solutions. We have justified that the two processes are equivalent on the apparent horizon, but on the event horizon they are not equivalent. If the first law is valid on the event horizon, then the GSL may be satisfied by the BD solution, but if the first law is not satisfied then the GSL is not satisfied by the BD solution. Therefore, the first law always favours the GSL on the event horizon. In our effective approach, the first law and the GSL are always satisfied on the apparent horizon, which does not depend on the BD theory of gravity.

Publisher

Canadian Science Publishing

Subject

General Physics and Astronomy

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reconsidering bulk viscosity in Brans–Dicke theory;Modern Physics Letters A;2024-07-20

2. Recent acceleration and future deceleration in Brans–Dicke theory;General Relativity and Gravitation;2023-12-27

3. Cosmological aspects of anisotropic chameleonic Brans–Dicke gravity;New Astronomy;2023-05

4. Barrow holographic dark energy in deformed Hořava–Lifshitz gravity;International Journal of Geometric Methods in Modern Physics;2022-06-17

5. Çok Tabakalı Evren Modeline Genel Bakış;Uşak Üniversitesi Fen ve Doğa Bilimleri Dergisi;2021-06-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3