Author:
Agrawal Awadh B.,Jaeger Leslie G.,Mufti Aftab A.
Abstract
This paper presents what is believed to be the first successful attempt to apply an elastoplastic material model to planar reinforced concrete under cyclic loads. The model treats an element of reinforced concrete in biaxial stress states, and provides for the cracking and crushing of concrete, opening and closing of previously formed cracks, and yielding of steel reinforcement. The model offers both computational efficiency and an adequate level of accuracy.A rectangular plane stress finite element with three degrees-of-freedom per node, two translations, and an in-plane rotation is employed to discretize the continuum. The presence of rotational degrees-of-freedom at nodes allows an application of the proposed model to the analysis of coupled shear walls and shear wall – frame systems.When the nonlinear finite element analysis results are compared with the experimental response of a shear panel and a shear wall subject to reversed cyclic loads, a good comparison is achieved. The analytical results for the shear panel are also compared with those obtained by other investigators using a degrading nonlinear material model, and a close correspondence is obtained.
Publisher
Canadian Science Publishing
Subject
General Environmental Science,Civil and Structural Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献