Properties of atoms in molecules: nuclear magnetic shielding

Author:

Keith T.A.,Bader R.F.W.

Abstract

This paper analyzes the nuclear magnetic shielding tensors underlying the chemical shift in NMR spectroscopy in terms of the field generated at the nucleus by the current J(1)(r) induced by an external magnetic field. The magnetic field at nucleus [Formula: see text] resulting from an element of the induced current density at a distance [Formula: see text] is proportional to [Formula: see text] which defines the shielding density [Formula: see text] The magnetic shielding of a nucleus is fundamentally an atomic property, a feature brought to the fore by using the theory of atoms in molecules and the integration of [Formula: see text] over the individual atomic basins relates the shielding tensor [Formula: see text] to a sum of atomic contributions. The shielding of nucleus ** is primarily determined by the flow of current within the basin of atom [Formula: see text], a contribution that varies from the approximate diamagnetic limit, given by the atomic Lamb value for the atom in the molecule, to values that are greatly reduced by the presence of paramagnetic current flows associated with particular bonding effects. Whether the contribution of a neighbouring atom is shielding or deshielding is readily understood by relating the form of the current flow within its basin to the magnetization density. [Formula: see text]. A study of the currents induced in benzene shows that the extent to which a proton, bonded to a ring of atoms, is deshielded by the field exerted by its bonded neighbour provides a direct diagnostic test for a ring current and an accurate relative measure of its strength. The theory of atoms in molecules isolates transferable atomic properties and because of this ability one finds, in addition to the anticipated result that a given functional group contributes identical amounts to the isotropic shielding [Formula: see text] of a nucleus external to it through a series of molecules, the more remarkable result that the whole of the variation in [Formula: see text] can have its origin in the basin of atom [Formula: see text], the contribution from external groups remaining constant. For example, the external contribution to [Formula: see text] for a carbon nucleus in a normal hydrocarbon is independent of chain length and position of [Formula: see text] within the chain, the methyl group in ethane contributing the same shielding to a methyl carbon as does the butyl group in pentane. This constancy in external contributions to the shielding is also found for N, O and F nuclei in substituted, saturated hydrocarbons. Key words: NMR, magnetic shielding, current density, magnetic shielding density.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 79 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3