Author:
Brubaker C L,Paterson A H,Wendel J F
Abstract
Allotetraploid cotton species (Gossypium) belong to a 1-2 million year old lineage that reunited diploid genomes that diverged from each other 5-10 million years ago. To characterize genome evolution in the diploids and allotetraploids, comparative RFLP mapping was used to construct genetic maps for the allotetraploids (AD genome; n = 26) and diploids (A and D genomes; n = 13). Comparisons among the 13 suites of homoeologous linkage groups permitted comparisons of synteny and gene order. Two reciprocal translocations were confirmed involving four allotetraploid At genome chromosomes, as was a translocation between the two extant A genome diploids. Nineteen locus order differences were detected among the two diploid and two allotetraploid genomes. Conservation of colinear linkage groups among the four genomes indicates that allopolyploidy in Gossypium was not accompanied by extensive chromosomal rearrangement. Many inversions include duplicated loci, suggesting that the processes that gave rise to inversions are not fully conservative. Allotetraploid At and Dt genomes and the A and D diploid genomes are recombinationally equivalent despite a nearly two-fold difference in physical size. Polyploidization in Gossypium is associated with enhanced recombination, as genetic lengths for allotetraploid genomes are over 50% greater than those of their diploid counterparts.Key words: restriction fragment length polymorphism (RFLP), Gossypium, evolution, polyploidy.
Publisher
Canadian Science Publishing
Subject
Genetics,Molecular Biology,General Medicine,Biotechnology
Cited by
141 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献