Author:
Jay Francis T.,Dawood Magdy R.,Luk Sandy K. S.
Abstract
Interferon induces two antiviral actions against vesicular stomatitis virus by (i) inhibiting viral protein synthesis which leads to a reduction in virion production, and (ii) producing progeny which are deficient in infectivity (VSV1F). At low or physiological concentrations of interferon, while the virion production was decreased by less than 10-fold, the virion infectivity yield was suppressed more than 1000-fold. The VSVIF was found to be deficient (quantitatively) in envelop glycoprotein G and protein M. Tryptic peptide mapping indicated mat there was no detectable structural abnormality in the G, M, and N proteins of VSVIF. The virion cores, lacking only the envelop G protein, isolated from VSVIF and control VSV have essentially identical specific infectivity. This indicated that the virion proteins L, N, NS, and M, as well as viral RNA that make up the virion core, must be functionally normal, and the observed deficiency in G protein was likely to be the cause of the functional deficiency of the virion. Low concentrations of DEAE-dextran, which is known to partially overcome the virion's dependence on the G protein for adsorption to the cell during infection, were found to enhance the infectivity of VSVIF more than the control virion. These results together indicated that the loss of infectivity in the VSV1F was due to the deficiency of the surface glycoprotein G.Key words: interferon, vesicular stomatitis virus, defective virions.
Publisher
Canadian Science Publishing
Subject
Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology