Relation between MDR1 mRNA levels, resistance factor, and the efficiency of P-glycoprotein-mediated efflux of pirarubicin in multidrug-resistant K562 sublines

Author:

Meesungnoen Jintana,Jay-Gerin Jean-Paul,Mankhetkorn Samlee

Abstract

In this work, we sought to investigate the relation existing between MDR1 mRNA levels, the resistance factor (RF), and the efficiency of efflux of pirarubicin (THP) mediated by P-glycoprotein (P-gp) in multidrug-resistant (MDR) K562 sublines. The MDR K562 sublines were selected from K562/adr cells by exposure to different adriamycin concentrations: 300 nM (K562/300), 1000 nM (K562/1000), and 10 000 nM (K562/10000), yielding RF values of 23.2, 26.5, and 39.6, respectively. The analysis of the P-gp encoding MDR1 gene overexpression by reverse transcriptase – polymerase chain reaction provided evidence of increased MDR1 mRNA levels when the adriamycin concentration used for the MDR cell selection increased. We used spectrofluorometric methods to determine the kinetics of the uptake and P-gp-mediated efflux of THP in the different selected MDR K562 sublines. Our data showed that (i) the maximal rate of P-gp-mediated efflux of THP, Vmax, increased with increasing RF; (ii) the observed Michaelis constant, Km, had the same value for all selected sublines, thus leading to an overall increase in the ratio Vmax/Km (5.1 × 10–3, 6.2 × 10–3, 6.8 × 10–3, and 9.3 × 10–3 s–1 for K562/adr, K562/300, K562/1000, and K562/10000 cells, respectively), and (iii) the determination of the Hill coefficient (nH) gave values close to 2, which suggested a positive cooperative transport of THP with the expelling of two molecules of THP per turnover of P-gp. This study demonstrated that, in the K562/adr sublines used in our experiments, P-gp played a major role in conferring the MDR phenotype. Moreover, under our experimental conditions, intracellular acidic organelles were shown to contribute to decreased drug–target interaction and, thereby, decreased cytotoxicity. The variation of the concentrations of THP accumulated in the acidic organelles as a function of the total THP concentration added to the cells was the same, within the limits of experimental errors, whatever the degree of resistance of the studied MDR K562 sublines. Finally, this study suggested that, in the selected MDR K562 sublines, the K+/H+ antiporter exchanger could be activated by the pirarubicin transport, leading to a probable acidification of intracellular pH. The P-gp-mediated efflux of THP and an accumulation of THP in acidic organelles confer an advantage for MDR cells in surviving prolonged exposure to cytotoxic agents and giving rise to high degrees of resistance. Key words: multidrug resistance, P-glycoprotein, pirarubicin, acidic organelles, MDR1 mRNA levels, fluorescence spectroscopy, kinetic parameters.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3