A New Approach for Determining Compressibility and Permeability Characteristics of Dredged Slurries with High Water Content

Author:

Shi Li1,Yin Xing2,Sun Honglei3,Pan Xiaodong1,Yuan Zonghao2,Cai Yuanqiang4

Affiliation:

1. Zhejiang University of Technology, 12624, Hangzhou, Zhejiang, China;

2. Zhejiang University of Technology, 12624, Civil Engineering and Architecture, Hangzhou, Zhejiang, China;

3. Zhejiang University of Technology, 12624, Institute of Geotechnical Engineering, Hangzhou, Zhejiang, China;

4. Zhejiang University of Technology, 12624, Chaowang Road 18, Xiacheng District, Hangzhou, China, 310014, , ;

Abstract

In the vacuum treatment of dredged slurries via prefabricated vertical drains (PVDs), both filtration and consolidation may happen to them when subjected to the vacuum gradient. Similar to the consolidation, the filtration may provide equally useful information on interpreting the constitutive behavior of the slurry. In this paper, a new approach utilizing the filtration process is devised to evaluate the constitutive behaviors of dredged slurries. The approach is composed of a vacuum filtration device and an iterative curve fitting algorithm. Two types of tests, namely step-vacuum filtration and constant-vacuum filtration followed by compression test, must be conducted on the slurry specimens, and only the time variations of the filtrate discharge should be recorded. On the basis of the recorded data, the curve fitting algorithm is adopted for determining the parameters of the constitutive equations. The effectiveness of the proposed approach is verified through comparing the obtained compressibility and permeability of the slurries with the data provided by the oedometer test and with the empirical relationships from different sources. The comparisons demonstrate that the constitutive relationships determined by the present approach can predict the compressibility and permeability characteristics of dredged slurries with an acceptable degree of accuracy.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3