Automatic soil identification from penetrometric signal by using artificial intelligence techniques

Author:

Sastre Carlos12,Breul Pierre1,Benz Navarette Miguel2,Bacconnet Claude1

Affiliation:

1. Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, Clermont Ferrand F-63000, France.

2. Sol-Solution, Géotechnique Réseaux, Riom F-63200, France.

Abstract

Conventional geotechnical soil classifications aim to classify soils into families with geotechnical characteristics and therefore similar behaviour; however, they require core samples and laboratory identification testing. Several empirical systems for estimating the nature of the soils have been developed on the basis of several in situ geotechnical tests. However, at present these systems remain empirical and they are often only used on an indicative basis. The objective of this article is, based on the analysis of dynamic penetrometric signals, to develop a methodology able to provide an estimate of the nature of the soil crossed. The methodology developed provide an automatic classification based on artificial neuron networks (ANNs) tools. Two types of ANN architectures were considered: multi-layer feedforward perceptron (MFP) and probabilistic neural network (PNN). The learning of these two tools was achieved through a base carried out in the laboratory and in situ. Both classification models were then tested in blind conditions and showed a good efficiency for calibrated soils and promising results for in situ soils.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Reference31 articles.

1. AFNOR. 2013. Justification des ouvrages géotechniques - norme d’application nationale de l’eurocode 7 – fondations superficielles. French standard NF P 94-261. Association Française de Normalisation (AFNOR).

2. A new geotechnical method for natural slope exploration and analysis

3. Benz-Navarrete, M.A. 2009. Dynamic measurements during the hammering of the Panda 2 Penetrometer. Ph.D. thesis, Université Blaise Pascal – Clermont-Ferrand II.

4. Machine learning in soil classification

5. Chaigneau, L. 2001. Caractérisation des milieux granulaires de surface à l’aide d’un pénétromètre. Ph.D. thesis, University Blaise Pascal, Clermont-Ferrand II, France.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3