Model for predicting the variation of shear stress in unsaturated soils during strain-softening

Author:

Yang Xiuhan11,Vanapalli Sai K.11

Affiliation:

1. Department of Civil Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada.

Abstract

Several of the geotechnical structures constructed with unsaturated soils undergo a large deformation prior to reaching failure conditions (e.g., progressive failure of a soil slope). During this process, the shear stress in soils typically increases initially and then reduces with an increase in the shear strain. The prediction of the stress–strain relationship is critical for reasonable interpretation of the mechanical behavior of those geo-structures that undergo large deformation. This paper introduces a model based on the disturbed state concept (DSC) to predict the variation of shear stress in unsaturated soils during the strain-softening process under consolidated drained triaxial compression condition. In this model, the apparent stress–strain relationship is formulated as a weighted average of a hyperbolic hardening response extending the pre-peak state stress–strain curve and a linear response extending the critical state stress–strain curve with an assumed disturbance function as the weight. The prediction procedure is described in detail and the proposed model is validated using several sets of published data on unsaturated soils varying from coarse- to fine-grained soils. Finally, a comprehensive error analysis is undertaken based on an index of agreement approach.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3