Consequences of drying on the hydro-mechanical response of fibrous peats upon compression

Author:

Zhao H.F.12,Jommi C.34ORCID

Affiliation:

1. School of Civil Engineering, Sun Yat-Sen University, Guangzhou 510275, China

2. Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong 510301, China

3. Department of Geoscience and Engineering, Delft University of Technology, Stevinweg 1, 2628 CN Delft, the Netherlands

4. Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy

Abstract

Peats are encountered in waterlogged deltaic areas, where degradation is delayed by favourable environmental conditions. The recent increase in frequency and severity of droughts is expected to accelerate peat degradation, in turn increasing subsidence and flood risk, urging better understanding of the response of peats to drying events. To this aim, compression tests on natural and reconstituted peat samples were performed, supported by X-ray micro-computed tomography. The peat fabric was found to be the key factor in the response to drying, with fibres playing the most significant role. Drying in peats starts affecting the macro-fabric, with an irreversible reduction in volume and disruption of the fibrous network occurring under saturated conditions until a threshold void ratio is reached, below which desaturation occurs of the intra-fibres and intra-peds pores. The first drying stage dramatically decreases the compressibility, while the hydraulic conductivity is hardly affected due to the enlargement of macropores. Secondary compressibility is affected by the peat fabric besides the organic content. The total organic content does not change substantially during drying; hence, it is not the best proxy to describe the consequences of drying on the response of fibrous peats. The fibre content can be better used to serve the aim.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3