A constitutive model for gassy clay

Author:

Gao Zhiwei1,Cai Hongjian2,Hong Yi3,Lu Dechun4

Affiliation:

1. University of Glasgow, 3526, Glasgow, United Kingdom of Great Britain and Northern Ireland, G12 8QQ;

2. University of Glasgow, 3526, Glasgow, United Kingdom of Great Britain and Northern Ireland;

3. Zhejiang University, 12377, College of Civil Engineering and Architecture, Hangzhou, China;

4. Beijing University of Technology, 12496, Beijing, China;

Abstract

Fine-grained marine sediments often contain gas bubbles that can cause many geotechnical problems. This soil has a composite structure with gas bubbles fitting within the saturated soil matrix. The gas cavity has a detrimental effect on the soil stiffness and strength when they are filled with undissolved gas only. The gas cavity can be filled with gas and pore water due to ‘bubble flooding’. Bubble flooding has a beneficial effect on the soil stiffness and undrained shear strength because it makes the saturated soil matrix partially drained under a globally undrained condition. A critical state constitutive model for gassy clay is presented which accounts for the composite structure of the soil and bubble flooding. The gas cavity is assumed to have a detrimental effect on the plastic hardening of the saturated soil matrix. Some of the bubbles can be flooded by pore water from the saturated soil matrix which leads to higher mean effective stress of the saturated soil matrix. Consequently, both soil stiffness and strength increase. Only one new parameter is introduced to model the detrimental effect of gas bubbles on plastic hardening. The model has been validated by the results of three gassy clays.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A bounding surface model for gassy clay;Computers and Geotechnics;2023-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3