Effect of nearby piles and soil properties on thermal behaviour of a field-scale energy pile

Author:

Moradshahi Aria1,Faizal Mohammed1,Bouazza Abdelmalek1,McCartney John S.2

Affiliation:

1. Department of Civil Engineering, Monash University, 23 College Walk, Clayton, VIC 3800, Australia.

2. Department of Structural Engineering, University of California San Diego, 9500 Gilman Drive, SME 442J, La Jolla, CA 92093-0085, USA.

Abstract

The thermal response of an energy field scale pile that is part of a pair of energy piles spaced at a centre-to-centre distance of 3.5 m (i.e., 6D, where D is the pile diameter), was examined experimentally and numerically. Three field tests were conducted to assess the axial and radial thermal responses of the energy pile: (i) heating of the energy pile alone, (ii) heating of both energy piles simultaneously, and (iii) heating of the other energy pile while the considered energy pile was not heated. Good agreement was obtained between the experimental and numerical evaluations of the energy pile during the tests. A parametric study of the validated numerical model was performed for each of the three tests to understand the effects of varying soil thermal conductivity, thermal expansion coefficient, and elastic modulus on the thermal response of the considered energy pile. The numerical results confirmed the field results that radial thermal stresses in the energy piles were insignificant compared to axial thermal stresses. The impact of elastic modulus of the soil was more significant on the thermal stresses of the energy pile compared to the effects of soil thermal conductivity and thermal expansion coefficient. The thermal stresses of the considered energy pile were not significantly affected when both energy piles were heated simultaneously, even though ground temperature changes between the energy piles were more significant due to thermal interaction. Only minor thermal effects on the non-thermal pile were observed during heating of one of the energy piles for different soil properties.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3