Bayesian Neural Network-based Uncertainty Modelling: Application to Soil Compressibility and Undrained Shear Strength Prediction

Author:

Zhang Pin1,Yin Zhen-Yu1,Jin Yin-Fu1

Affiliation:

1. The Hong Kong Polytechnic University, 26680, Department of Civil and Environmental Engineering, Kowloon, Hong Kong;

Abstract

This study adopts the Bayesian neural network (BNN) integrated with a strong non-linear fitting capability and uncertainty, which has not previously been used in geotechnical engineering, to propose a modelling strategy in developing prediction models for soil properties. The compression index Cc and undrained shear strength su of clays are selected as examples. Variational inference (VI) and Monte Carlo dropout (MCD), two theoretical frameworks for solving and approximating BNN, respectively, are employed and compared. The results indicate that the BNN focuses on identifying patterns in datasets, and the predicted Cc and su show excellent agreement with the actual values. The reliability of the predicted results using BNN is high in the area of dense datasets. In contrast, the BNN demonstrates low reliability in the predicted result in the area of sparse datasets. Additionally, a novel parametric analysis method in combination with the cumulative distribution function is proposed. The analysis results indicate that BNN-based models are capable of capturing the relationships of input parameters to the Cc and su. BNN, with its strong prediction capability and reliable evaluation, therefore shows great potential to be applied in geotechnical design.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3