Author:
Champagne Yves,McCarthy Nathalie
Abstract
The effects of the longitudinal spatial hole burning on the static lasing characteristics of a specific configuration of distributed-feedback semiconductor laser with three phase-shift regions are investigated using a numerical approach. A serious degradation of the stability of the optimum design, having the flattest axial intensity distribution at low output power, is predicted for drive levels beyond a critical value. The lasing wavelength exhibits a sudden shift (wavelength chirping), along with a significant degradation of the single-mode character of the longitudinal-mode spectrum. Thus, the potentialities of this multiple-phase-shift structure to provide a stable narrow-linewidth emission at high output power appear to be less than expected from results calculated for the near-threshold regime. Nevertheless, it is found that a multiple-phase-shift configuration that departs slightly from the optimum case suffices to recover most of the promises expected from this distributed-feedback laser design.
Publisher
Canadian Science Publishing
Subject
General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献