Abstract
The heat of combustion of burning trees is often used in forest-fire hazard modeling to relate mass-loss results to the heat produced; therefore reliable values are needed. Experimental results for the effective heat of combustion of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) trees are presented as a function of moisture content. It is also shown that during a forest fire, the effective heat of combustion does not correspond to the oxygen-bomb-test value. Instead, the value will always be lower, since the heat of combustion of char is higher than that of the pyrolysate vapors, and char mostly remains unburned during a forest fire. These are the first and only experimental results obtained from testing of actual trees. But results from benchmark testing and studies on wood products by other investigators are broadly consistent with our findings. It is further shown that moisture content has a major effect on the effective heat of combustion. A quantitative expression for the effective heat of combustion, as a function of moisture content, is obtained. Benchmark testing by earlier researchers established that generally there is only a slight species effect on the heat of combustion; therefore the present Douglas-fir results can be applied in more general forest-fire modeling.
Publisher
Canadian Science Publishing
Subject
Ecology,Forestry,Global and Planetary Change
Cited by
58 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献