Crystal-field theory for the Rydberg states of polyatomic molecules

Author:

Chiu Ying-Nan

Abstract

The potential on a Rydberg electron due to the cluster of atoms near the center of a polyatomic molecule is expanded in powers of spherical harmonics. Nonvanishing potentials in totally symmetric irreducible representations are obtained using the crystal field of the cluster of atoms in D3h, C3v, D4v, C4v, Td, and D2d symmetries. Odd as well as the usual even powers of spherical harmonics are included up to [Formula: see text]. Spectroscopically observable differences in potentials between a planar versus a nonplanar XY3 molecule and among a square planar, pyramidal, tetrahedral, and dihedral XY4 molecule are exhibited. First-order energies are given for a Rydberg [Formula: see text] state showing λ dependence. Second-order energies due to mixing of Rydberg states by odd and even power potentials and splitting of ±λ degeneracies are shown analytically for an nd as well as an nf Rydberg electron. The formalism is applicable to nonpenetrating Rydberg orbitals. Approximate radial integrals are obtained. Exact angular integrals for the first- and second-order energies are given. Symmetry-adapted combinations of the separated Y3 and Y4 ligand atomic orbitals are derived up to d orbitals. The correlations between these linear combinations of atomic orbitals as molecular configurations change are shown, e.g., as an XY4 molecule distorts from (D4h, C4v) to (D2d, Td) and vice versa.

Publisher

Canadian Science Publishing

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3