A reinvestigation of mono- and bis-ethynyl phosphonium salts: structural and computational studies and new reactivity

Author:

Veinot Alex J.11,Todd Angela D.K.11,Robertson Katherine N.11,Masuda Jason D.11

Affiliation:

1. The Atlantic Centre for Green Chemistry and the Department of Chemistry, Saint Mary’s University, 923 Robie St., Halifax, NS B3H 3C3, Canada.

Abstract

A series of mono- and bis-ethynyl phosphonium salts have been prepared via reaction of bromoacetylenes, Ph–C≡C–Br or Br–C≡C–C6H4–C≡C–Br, with various phosphines. Some of the derivatives reported are previously known, ([Ph–C≡C–PPh3]Br, [Ph–C≡C–PMe3]Br, [Ph–C≡C–PBu3]Br, and [Ph3P–C≡C–C6H4–C≡C–PPh3][Br2]), however typically these are missing complete spectroscopic characterization and many have been prepared using much more complicated methods. The derivative [Ph–C≡C–PPh3]Br is capable of inhibiting the growth of tumour cells and has been shown crystallographically to have a significant interaction with the heat shock proteins (HSP70 or DnaK). Thus, solid state structures for all seven phosphonium salts prepared have been reported as they may be of interest to others in this field. Sterically encumbered phosphines such as Mes3P did not react with Ph–C≡C–Br; however, (2,4,6-MeO–C6H2)3P was found to slowly react at moderate temperature to give the expected alkynyl phosphonium salt. However, at higher temperatures, the alkynyl phosphonium undergoes an intramolecular cyclization to form a phosphonium analogue of a 1,4-oxazine. Finally, electronic structure calculations reveal the positive charge on the acetylenic β-carbon, a result of a significant contribution of other canonical structures. The flexibility of the P–C≡C bond has been investigated showing a low-energy barrier (<5 kcal/mol) for bending up to 40° from the optimized angle in the model [Ph–C≡C–PMe3]+ cation. This ease of bending may be of significance in the development of other alkynyl phosphonium tumour cell growth inhibitors.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3