Affiliation:
1. Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, P.O. Box 17020, Jadavpur University, Kolkata 700032, (WB), India.
2. Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar 470003, (MP), India.
Abstract
Aromatase is a multienzyme complex responsible for the biosynthesis of estrogen and its level has been found higher in breast cancer. Although the designing strategy of aromatase inhibitors (AIs) has continued for more than four decades, it may still be in demand to design highly effective and less toxic AIs. In this study, several chemometric approaches have been used to explore the important structural features of a series of letrozole-based analogs for their promising aromatase inhibitory activity. All techniques are statistically validated individually and in turn, validated with each other along with the structure–activity relationship (SAR) observations. The imidazole ring has been found to interact with the heme iron, whereas the triazole ring system has not shown any interaction. Moreover, imidazole function is better than 1,2,3-triazole, whereas 1,2,3-triazole is better than the 1,2,5-triazole ring system. Additionally, a bulky aryl substitution in the azole ring along with the orientation of the azole nitrogens and the cyanophenyl function has an essential role in the inhibition of aromatase. Furthermore, a cyano group substituted at the phenyl moiety interacts with Arg115, Met374, and Ser478 at the enzyme active site to form hydrogen bonding interactions. These observations are useful for designing potential AIs in the future.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献