Colloidal synthesis of Pt–In bimetallic nanoparticles for propane dehydrogenation

Author:

Wang Xuchun1,Yang Di1,Xu Yong1,Zhong Jun1,Zhang Qiao12

Affiliation:

1. Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China.

2. State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 South Taoyuan Road, Taiyuan, Shanxi, P. R. China.

Abstract

Recently, Pt-based bimetallic nanoparticles have drawn much attention because of their great catalytic performance and wide applications in diverse fields. In this work, we report that bimetallic Pt–In nanoparticles with uniform size distribution and controllable composition can be synthesized through a one-step, facile colloidal approach. Various characterization tools such as XRD, TEM, XPS, and synchrotron techniques have been used to characterize the as-obtained nanoparticles. It is demonstrated that the Pt and In elements are homogeneously distributed in the whole nanoparticle. The bimetallic Pt–In nanoparticles have shown great catalytic performance, including high activity, high selectivity, and high stability, for the propane dehydrogenation reaction to produce propene, one of the most important chemicals. The excellent catalytic performance makes Pt–In bimetallic nanoparticles promising catalysts in future industrial application.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3