Theoretical study of the adsorption of aromatic amino acids on a single-wall boron nitride nanotube with empirical dispersion correction

Author:

Fan Guohong11,Zhu Sheng11,Ni Ke11,Xu Hong11

Affiliation:

1. School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, P.R. China.

Abstract

In the present study, the adsorption and properties of three popularly studied aromatic amino acids, namely phenylalanine, tyrosine, and tryptophan, on the surface of the single-wall boron nitride nanotubes (BNNTs) have been explored with an empirical dispersion corrected density functional tight-binding method. A serials of armchair BNNTs (n = 4–12) and zigzag BNNTs (n = 8–18) with the aromatic amino acid adsorbed on the surface are investigated. With the dispersion correction explicitly considered in the density functional tight-binding method, the adsorption properties between amino acids and BNNTs are described by including long-range van der Waals interactions. It is found that the π–π and H–π stacking interactions are the main forces stabilizing the system. Based on the evidence of adsorption energy, charge density plots, and density of states analysis, the study concludes that the BNNT adsorbs the amino acids with no bonded interactions between the two parts. The interactions of amino with the BNNT were further studied by analyzing molecular orbitals and excited state absorption spectrum of the stable complexes.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3