The polarity sensitivity factor of some fluorescent probe molecules used for studying supramolecular systems and other heterogeneous environments

Author:

Wagner Brian D.11,Arnold Amy E.11,Gallant Spencer T.11,Grinton Carmen R.11,Locke Julia K.11,Mills Natasha D.11,Snow Carrie A.11,Uhlig Timara B.11,Vessey Christen N.11

Affiliation:

1. Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1E 1Z5, Canada.

Abstract

Fluorescence spectroscopy provides an excellent technique for investigating heterogeneous systems, due to its high sensitivity and the large effect of the local environment on molecular emission. In addition, the use of polarity-sensitive fluorescent probes as guests in supramolecular host–guest inclusion complexes can be exploited in fluorescent sensors. This paper identifies, tabulates, and quantifies a series of useful polarity-sensitive fluorescent probes, with a wide range of polarity-dependent fluorescence responses. The degree of polarity sensitivity is quantified using the polarity sensitivity factor (PSF), developed in our laboratory. In most cases, such polarity-sensitive probes show increased emission as the local polarity is decreased (PSF > 1); 10 such probes are described. However, less commonly, “reverse polarity dependence” can occur in which probe emission decreases with decreasing polarity (PSF < 1); four such probes are described. The mechanism for the observed polarity-induced fluorescence changes will also be discussed in selected representative cases. The purpose of this paper is to present details on a broad arsenal of polarity-sensitive fluorescence probes with varying properties, with potentially useful applications in the study of heterogeneous systems, including inclusion phenomena, and in practical applications such as fluorescent sensors, which will be useful to researchers studying supramolecular and other heterogeneous systems using fluorescence spectroscopy.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Reference66 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3