Affiliation:
1. Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
Abstract
Pheromone-binding proteins (PBPs) are water-soluble proteins found at high concentration in the lymph fluid of pheromone-sensing hairs on insect antennae. PBPs could function as pheromone transporters, ferrying the hydrophobic odorants to their cognate odorant receptors. However, it is also possible for these proteins to bind the odorants near the dendritic membrane of pheromone-sensing neurons and, therefore, function as scavengers. The two functions are not mutually exclusive. In this paper, the transporter and (or) scavenger roles of PBPs in pheromone perception were investigated using the pheromone of the gypsy moth (7R, 8S)-epoxy-2-methyloctadecane and analogues with heteroatom (O or S) substitutions in the hydrocarbon chain. PBP–ligand equilibrium dissociation constants (Kd) were correlated with electroantennogram (EAG) response patterns of male gypsy moth antennae to the pheromone, its enantiomer, and their respective analogues. EAG measures the potential drop across the antenna due to odorant receptor activation and subsequent ion channel opening. Three quantifiable properties of the EAG responses were used: lag times from stimulus to response onset, depolarization rates (rate of receptor activation), and repolarization rates (rate of receptor deactivation). Negative correlations were observed between Kd and lag times and between Kd and repolarization rates. Positive correlations were seen with Kd against depolarization rates. The inverse relationship of Kd constants with lag times and the direct relationship with depolarization rates strongly supports transporter function of PBPs. Interestingly, the inverse correlation of Kd constants with repolarization rates suggests a scavenger effect. These results indicate that PBP affects odorant receptor activity through both odorant transport and scavenger functions. Through differences in ligand binding affinities, PBPs influence pheromone availability for receptor activation.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献