Affiliation:
1. Hubei Key Laboratory of Advanced Technology for Automotive Components & Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan University of Technology, Wuhan 430070, P. R. China.
2. Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250000, P. R. China.
Abstract
The reaction mechanisms of PAH formation from phenyl radical (C6H5) to naphthalene via C2H3 (C2H3-Path) and C4H4 (C4H4-Path) were investigated by the G3(MP2, CC) method. The hydrogen abstraction, ring closure, cis–trans isomerization, and disproportionation reactions were considered, as well as their occurred sequence. The results showed that H-abstraction reactions occurred more easily than H-dissociation reactions. The cis–trans conversion reactions in sub-routes of C2H3-Path and C4H4-Path provided the largest barriers of 51, 53, and 36 kcal/mol along their routes, which illustrated that the cis–trans isomerization was energetically costly in the PAH formation process. The entrance barriers of C2H2-Path, C2H3-Path, and C4H4-Path are 6, 8, and 3 kcal/mol, respectively, which indicates that it is easier to add C4H4 to C6H5 compared with adding C2H2 to C2H3. C2H3 additions were highly exothermic with reaction energies greater than 110 kcal/mol, and compared with C2H2 additions, C2H3 additions were irreversible. However, C2H2-Path, C2H3-Path and C4H4-Path involved energy barriers of 20, 32, and 36 kcal/mol, respectively. Considering the high temperature in combustion and the approximate concentrations of C2H3 and C4H4, all three of these pathways could lead to naphthalene in some combustion flames.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献