Survival and effects of wild-type, mutant, and recombinant Streptomyces in a soil ecosystem

Author:

Wang Zemin,Crawford Don L.,Pometto III Anthony L.,Rafii Fatemeh

Abstract

In a laboratory simulation, selected wild-type, mutant, and recombinant Streptomyces were released into a silt loam soil. Strains included genetically enhanced lignin decomposers and those expressing recombinant plasmids. Their survival and effects on soil organic carbon mineralization were monitored in sterile and nonsterile soil, with and without lignocellulose supplementation. Survival was followed by viable plate counts on selective media. CO2 evolution was monitored in respiration cabinets. All strains, whether released as spores or mycelia, survived in nonsterile soil for up to 30 days. Selected strains released as spores survived for at least 10 months. With all strains, the numbers of colony-forming units per gram of soil slowly declined until relatively similar, stable population levels were achieved. Spores were more stable than mycelia. Only one recombinant survived significantly better in nonsterile soil than did its corresponding nonrecombinant parent, but only during the 1st to 2nd week after release. With two exceptions, there were no statistically significant short-term effects of release on the rates of carbon mineralization in unamended or lignocellulose-amended sterile and nonsterile soils. One recombinant, Streptomyces lividans TK23-3651, significantly affected the short-term rate of soil organic carbon turnover. After its release, the rate of soil organic carbon mineralization increased, particularly in nonsterile soil amended with lignocellulose. The cumulative amount of CO2 evolved over a 30-day period was significantly higher than for control soils or those inoculated with other Streptomyces. Another recombinant, S. lividans TK23/pSE1, temporarily reduced carbon mineralization rates, but only in nonsterile, unamended soil during the first few days after release. This is the first report of released, genetically altered Streptomyces having a measurable effect on a natural ecosystem. The significant enhancing effect of strain TK23-3651 was transient, and additional studies showed that this strain was genetically unstable in soil.Key words: Streptomyces, recombinant, soil, environment, release.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3