Author:
Kubo Takashi,Aiso Toshiko,Ohki Reiko
Abstract
In the divE mutant, which has a temperature-sensitive mutation in the tRNA1Ser gene, the synthesis of beta-galactosidase is dramatically decreased at the non-permissive temperature. In Escherichia coli, the UCA codon is only recognized by tRNA1Ser. Several genes containing UCA codons are normally expressed at 42°C in the divE mutant. Therefore, it is unlikely that the defect is due to the general translational deficiency of the mutant tRNA1Ser. In this study, we constructed mutant lacZ genes, in which one or several UCA codons at eight positions were replaced with other serine codons such as UCU or UCC, and we examined the expression of these mutant genes in the divE mutant. We found that a single UCA codon at position 6 or 462 was sufficient to cause the same level of reduced beta-galactosidase synthesis as that of the wild-type lacZ gene, and that the defect in beta-galactosidase synthesis was accompanied by a low level of lacZ mRNA. It was also found that introduction of an rne-1 pnp-7 double mutation restored the expression of mutant lacZ genes with only UCA codons at position 6 or 462. A polarity suppressor mutation in the rho gene had no effect on the defect in lacZ gene expression in the divE mutant. We propose a model to explain these results.Key words: divE gene, tRNA1Ser, lacZ gene expression, UCA codon.
Publisher
Canadian Science Publishing
Subject
Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献