ADSORPTION OF BENZENE AND ETHANOL UP TO HIGH RELATIVE PRESSURES ON FINELY DIVIDED SODIUM CHLORIDE: PART I. PARTICLE SIZE EFFECTS AND THE ADSORPTION OF BENZENE: PART II. THE LOWERING OF SURFACE FREE ENERGY BY ETHANOL

Author:

Weiler R. R.,Beeckmans J.,McIntosh R.

Abstract

Adsorption of benzene has been studied using four samples of fine sodium chloride. The range of relative pressures employed extended to 0.99. The data were employed to show that a correction to the relative pressure should be applied because of the curvature of the surface. The correction was made in the form of a reduction of the apparent relative pressure by application of the Kelvin equation, since the relative pressure over a convex surface would be less than over a plane surface. The adsorption data at high relative pressures for several samples of salt could then be represented by a common curve. It was further concluded that the thick-layer theory of adsorption due to Frenkel, Halsey, and Hill was applicable to adsorption on salt. Adsorption data for ethanol were then obtained and the reduction of surface free energy of the salt by the saturated vapor was evaluated. This figure was then combined with van Zeggeren's and Benson's value of the solid–liquid interfacial free energy for salt and ethanol to provide a provisional value of the surface free energy of sodium chloride of 227 ergs cm−2.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Interrelation of the parameters of equations of multilayer adsorption and BET;Protection of Metals and Physical Chemistry of Surfaces;2015-09

2. Description of polymolecular adsorption on energetically heterogeneous surfaces;Protection of Metals and Physical Chemistry of Surfaces;2012-05

3. Surface energy for brittle fracture of alkali halides from lattice dynamics;Surface Science;1975-03

4. Surface energy of solids;Chemical Society Reviews;1972

5. Physikalische Eigenschaften der festen Salze;Natrium;1972

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3