Characteristics of membrane transport losses during reticulocyte maturation

Author:

Blostein Rhoda,Grafova Eva

Abstract

The decline in activity of distinct membrane transport systems was followed during in vitro maturation of sheep reticulocytes, namely the sodium pump (measured as specific ouabain binding sites), Na+–glycine cotransport, and the nucleoside transporter (measured as specific nitrobenzylthioinosine binding sites). Certain features of this maturation-associated decline in membrane transport are clarified. Thus, the apparent retardation of loss by metabolic (ATP) depletion, reported previously for the sodium pump and Na+–glycine cotransport, is applicable also to the decline in nucleoside transport. The absolute losses, as well as relative effects of ATP depletion, are different for the three distinct systems. Inhibitors of membrane recycling and (or) intracellular processing, such as chloroquine, as well as ATP depletion, prevent not only the loss but also cause a transient increase in nucleoside transport sites apparent at the surface. Proteolytic processing, at least in the case of the nucleoside transporter, is probably also involved since leupeptin retards the loss in binding sites. Protection against the decline in transporters can also be affected by specific ligands as evidenced in ouabain protection of sodium pump sites. The results provide evidence that membrane transporter recycling is a fundamental process underlying the energy-dependent, maturation-associated loss in membrane transport functions.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exosomes in erythropoiesis;Transfusion Clinique et Biologique;2010-09

2. Red blood cell Na pump: Insights from species differences;Blood Cells, Molecules, and Diseases;2009-05

3. Amino Acid Transport;Red Cell Membrane Transport in Health and Disease;2003

4. PKC regulation of the human equilibrative nucleoside transporter, hENT1;FEBS Letters;2002-04-07

5. L antigens of sheep red blood cell membranes and modulation of ion transport;American Journal of Physiology-Cell Physiology;1997-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3