Author:
Blostein Rhoda,Grafova Eva
Abstract
The decline in activity of distinct membrane transport systems was followed during in vitro maturation of sheep reticulocytes, namely the sodium pump (measured as specific ouabain binding sites), Na+–glycine cotransport, and the nucleoside transporter (measured as specific nitrobenzylthioinosine binding sites). Certain features of this maturation-associated decline in membrane transport are clarified. Thus, the apparent retardation of loss by metabolic (ATP) depletion, reported previously for the sodium pump and Na+–glycine cotransport, is applicable also to the decline in nucleoside transport. The absolute losses, as well as relative effects of ATP depletion, are different for the three distinct systems. Inhibitors of membrane recycling and (or) intracellular processing, such as chloroquine, as well as ATP depletion, prevent not only the loss but also cause a transient increase in nucleoside transport sites apparent at the surface. Proteolytic processing, at least in the case of the nucleoside transporter, is probably also involved since leupeptin retards the loss in binding sites. Protection against the decline in transporters can also be affected by specific ligands as evidenced in ouabain protection of sodium pump sites. The results provide evidence that membrane transporter recycling is a fundamental process underlying the energy-dependent, maturation-associated loss in membrane transport functions.
Publisher
Canadian Science Publishing
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献