Dynamics of WD-repeat containing proteins in SSU processome components

Author:

Wada Kouko1,Sato Manae1,Araki Nanase1,Kumeta Masahiro2,Hirai Yuya2,Takeyasu Kunio2,Furukawa Kazuhiro1,Horigome Tsuneyoshi1

Affiliation:

1. Graduate School of Science and Technology, Department of Chemistry, Faculty of Science, Niigata University, Igarashi-2, Nishi-ku, Niigata 950-2181, Japan.

2. Graduate School of Biostudies, Kyoto University, Sakyo-ku, Yoshida-Konoe-cho, Kyoto 606-8501, Japan.

Abstract

Nine WD-repeat containing proteins in human SSU processome components have been found in a HeLa cell nuclear matrix fraction. In these proteins, t-UTP sub-complex components, i.e., CIRH1A, UTP15, and WDR43, were shown to be immobilized in the fibrillar centers of nucleoli in living cells. In this study, the dynamics of the remaining six proteins fused with green fluorescent protein (GFP), i.e., PWP2-GFP, TBL3-GFP, GFP-UTP18, GFP-NOL10, GFP-WDR46, and GFP-WDSOF1, were examined in living cells. The findings were as follows. (i) The majority of UTP-B sub-complex components, i.e., PWP2-GFP, TBL3-GFP, and GFP-UTP18, are localized to the dense fibrillar component and granular component regions in nucleoli; (ii) When rRNA transcription is suppressed, the majority of GFP-fused UTP-B sub-complex components are localized in the cap and body regions of nucleoli. (iii) The mobility of these proteins except for GFP-WDSOF1, and half of GFP-UTP18 and GFP-WDR46, respectively, is very low in living cells. (iv) When rRNA transcription is suppressed, the mobility of these proteins except for GFP-WDSOF1 is accelerated but still slow. These findings and others suggest that these WD-repeat proteins other than GFP-WDSOF1 found in the nuclear matrix fraction bind tightly to some macro-protein complexes and act as a scaffold or a core for the complexes in nucleoli.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3