HER2 induces cell scattering and invasion through ∆Np63α and E-cadherin

Author:

Liang Shan12,Tang Xiaoqing1,Ye Tengqing1,Xiang Wei1ORCID

Affiliation:

1. College of Modern Agriculture and Bioengineering, Yangtze Normal University, No. 16, Juxian Avenue, Fuling District, Chongqing, People's Republic of China

2. Institute of Sericulture and Systems Biology, Southwest University, No. 2, Tiansheng Road, Beibei District, Chongqing, People's Republic of China

Abstract

Human epidermal growth factor receptor 2 (HER2)-positive breast cancer constitutes approximately 30% of human breast cancers and is associated with poor outcomes. ∆Np63 is considered a metastasis inhibitor involved with cancer progression. This study aimed to clarify the roles and mechanisms of HER2 and ∆Np63 on scattering and invasion of MCF10A cells. Wild-type or mutant HER2 was cloned and transfected into MCF10A cells. Cell counting and transwell assays were applied to unveil the impact of HER2 upregulation and mutation on proliferation, cell scattering, and invasion. Western blotting and cell accounting were used to investigate the roles of ∆Np63 and p27. In vivo lung colonization assay was used to reveal the influences of HER2 and ∆Np63a on tumor metastasis. The results indicated HER2 remarkably enhanced cell proliferation, invasion, and scattering. Overexpression of either ΔNp63 or E-cadherin led to attenuated HER2-mediated regulation of cell migration, invasion, and scattering. Furthermore, we confirmed that HER2 enhanced cell proliferation but not migration through p27 and independent ∆Np63a. The results revealed that ∆Np63α contributed to the inhibition of HER2-induced metastasis. Collectively, our findings may further our understanding of the regulation of tumor progression and metastasis.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3