Calculation of static molecular properties in the framework of the unitary group based coupled cluster approach

Author:

Paldus Josef,Li Xiangzhu

Abstract

The recently developed and implemented state selective, fully spin-adapted coupled cluster (CC) method that employs a single, yet effectively multiconfigurational, spin-free reference and the formalism of the unitary group approach (UGA) to the many-electron correlation problem, has been employed to calculate static electric properties of various open-shell (OS) systems using the finite field (FF) technique. Starting with the lithium atom, the method was applied at the first-order interacting space single and double excitation level (CCSD(is)) to several first- and second-row hydrides having OS ground state, namely to the CH, NH, OH, SiH, PH, and SH radicals. In the case of NH we also considered three OS excited states. In all cases the dipole moment and polarizability were determined using a high quality basis set and compared with the experiment, whenever available, as well as with various configuration interaction results and other theoretical results that are available from the literature. The agreement of our CCSD(is) values with experiment is very satisfactory except for the 3Σ ground state of the NH radical, where the experimentally determined dipole moment is too small. No experimental data are available for the corresponding polarizabilities. It is also shown that the FF technique is not suitable for calculations of higher order static properties, such as the hyperpolarizability β and γ tensors. For this reason we formulate the linear response version of our UGA-based CCSD approach and discuss the aspects of its future implementation. Key words: static molecular properties, dipole moments, polarizabilities, free radicals, unitary group based coupled cluster method, linear response theory, finite field technique.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3