Risk estimation based on germ-cell mutations in animals

Author:

Favor Jack

Abstract

The set of mouse germ cell mutation rate results following spermatogonial exposure to high dose rate irradiation have been presented as the most relevant experimental results upon which to extrapolate the expected genetic risk of offspring of the survivors of the Hiroshima and Nagasaki atomic bombings. Results include mutation rates to recessive specific-locus, dominant cataract, protein-charge, and enzyme-activity alleles. The mutability as determined by the various genetic end points differed: the mutation rates to recessive specific-locus alleles and enzyme-activity alleles were similar and greater than the mutation rates to dominant cataract and protein-charge alleles. It is argued that the type of mutation event scored by a particular test will determine the mutability of the genetic end point screened. When the loss of functional gene product can be scored in a particular mutation test, as in the recessive specific-locus and enzyme-activity tests, a wide spectrum of DNA alterations may result in a loss and a higher mutation rate is observed. When an altered gene product is scored, as in the dominant cataract and protein-charge tests, a narrower spectrum of DNA alterations is screened and a lower mutation rate is observed. The radiation doubling dose, defined as the dose that induces as many mutations as occur spontaneously per generation, was shown to be four times higher in the dominant cataract test than the specific-locus test. These results indicate that to extrapolate to genetic risks in humans using the doubling-dose method, the extrapolation must be based on experimental mutation rate results for the same genetic end point. Alternatively, the extrapolation could employ the direct-approach procedures. Finally, a direct comparison of the irradiation-induced mutation rate to enzyme-activity alleles in mouse and man indicates no species differences.Key words: ethylnitrosourea, irradiation, mammalian mutagenesis, mouse, dominant cataract mutations, specific-locus mutations, protein-charge mutations, enzyme-activity mutations, doubling dose, human genetic risk.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,General Medicine,Biotechnology

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Genetic Effects and Risk Estimation;Comprehensive Biomedical Physics;2014

2. Germ Cell Mutagens [MAK Value Documentation, 2002];The MAK-Collection for Occupational Health and Safety;2012-01-31

3. Keimzellmutagene [MAK Value Documentation in German language, 2000];The MAK-Collection for Occupational Health and Safety;2012-01-31

4. Annex B and All references;Annals of the ICRP;2007-04

5. Annex A;Annals of the ICRP;2007-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3