Author:
O'Neill Melanie A,Cozens Frances L
Abstract
Alkali metal cation regulation of carbocation formation and reactivity in non-acidic zeolites is probed using the photoheterolysis reaction of 9-cyclopropyl-9-fluorenol. Nanosecond time-resolved diffuse reflectance is employed to directly observe the 9-cyclopropyl-9-fluorenyl cation as a transient species within the non-acidic zeolites. The efficiency of carbocation formation via photoheterolysis and the dynamics of other reaction pathways available to photoexcited 9-cyclopropyl-9-fluorenol are found to be strongly dependent on the zeolite alkali metal counterion. In particular, the yield of carbocation decreases with increasing counterion size in a manner consistent with the zeolite assisting the excited state CO bond cleavage via Lewis acid catalysis involving the metal cation. Zeolite encapsulation is also found to modulate the ability of water and methanol to assist photoheterolysis. For instance, the influence of coadsorbed water on the photoheterolysis reaction within zeolites is found to be highly sensitive to the alkali metal cation. The rate constant for intrazeolite decay of the 9-cyclopropyl-9-fluorenyl cation increases significantly as the alkali metal cation size increases and as the SiAl ratio decreases. These reactivity trends suggest that the intrazeolite decay of the 9-cyclopropyl-9-fluorenyl cation involves nucleophilic addition at the active site [Si-O-Al] bridges of the zeolite framework. In addition, the reactivity of the 9-cyclopropyl-9-fluorenyl cation within alkali metal zeolites can be regulated by the co-inclusion of reagents such as methanol, water, and 1,1,1,3,3,3-hexafluoro-2-propanol.Key words: cation-exchanged zeolites, 9-cyclopropyl-9-fluorenyl cation, laser photolysis, reactivity.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献