Comparative transcriptomic and proteomic analyses provide insights into the key genes involved in muscle growth in the large Diqing Tibetan pig

Author:

Nie Jingru12ORCID,Zhang Bo2,Ma Li3,Yan Dawei1,Zhang Hao2,Bai Ying4,Liu Shiyi5,Dong Xinxing1

Affiliation:

1. College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China

2. College of Animal Science and Technology, China Agricultural University, Beijing 100193, China

3. Department of Animal Husbandary and Veterinary Medicine, Yunnan Vocational and Technical College of Agriculture, Kunming 650212, China

4. College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China

5. Longri Breeding Farm of Sichuan Province, Hongyuan 624499, China

Abstract

Pig growth involves multiple genes and coordinated regulatory mechanisms. The large Diqing Tibetan pigs (TPs) are a unique plateau pig breed in China. Data on the mechanisms of muscle growth and development in TPs are limited, and its transcriptional regulation mechanism remains unclear. This study identifies important genes and proteins involved in muscle growth in TPs. We obtained transcriptomic and proteomic data from the longissimus dorsi muscle tissues of TPs and Duroc pigs (DPs) via RNA-seq and isobaric tags for relative and absolute quantitation analyses, respectively. Comparative analyses of TPs and DPs yielded 557 differentially expressed genes (DEGs) and 56 differentially abundant proteins (DAPs). Functional annotation of these DEGs and DAPs was enriched in metabolic processes, metabolic pathways, cytoskeletal protein binding, AMPK signaling pathway, insulin signaling pathway, PPAR signaling pathway, and other related pathways. Ten genes were identified as key candidate regulators ( FASN, PPARG, PCK1, ACTA2, TXN, SNU13, APOA1, ATP8, ALDH2, and IGFN1) that may play important roles in the muscle growth traits of TPs. This study provides a reference for analyzing the genetic regulation mechanism underlying muscle growth in pigs and improving the meat yield of TPs via molecular marker-assisted selection.

Funder

Yunnan Agricultural Basic Research Joint Project

Yunnan Shangri La Tibetan Pig Industry Science and Technology Mission

National Transgenic Major Project of China

Publisher

Canadian Science Publishing

Subject

Animal Science and Zoology,Food Animals

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3