Speed control strategy for power line inspection robot servo system considering time-varying parameters

Author:

Shang Dongyang1ORCID,Li Xiaopeng1,Li Fanjie1,Yang Hexu1

Affiliation:

1. School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China

Abstract

Most servo systems in power line inspection robots consist of a motor, an independent joint, and a load. In the process of crossing obstacles, the parameters in the servo systems have conspicuous time-varying properties due to the posture changes. The time-varying properties of dynamic parameters and the flexibility of the load would cause the rotation speed of the inspection robot to fluctuate, thereby affecting the motion accuracy. In this paper, the pole placement strategy was proposed to optimize the parameters in the proportional integral (PI) controller. The optimal controller parameters were selected in different postures to ensure steady speed output in the inspection robot servo system. First, the dynamic equations of the inspection robot servo system were established. Both joint flexibility and load flexibility were considered in the modeling process. Then, the Arnoldi algorithm was used to reduce the order of the servo system, and the transfer function from the speed to the drive torque was obtained. Next, the controller parameters were optimized using the pole placement method. By reasonably selecting the pole damping coefficient, the inspection robot could obtain a stable speed output. Finally, the numerical analysis and speed control of the inspection robot in different postures were analyzed. The results showed that the control strategy of pole placement could achieve a stable rotation speed for the inspection robot.

Publisher

Canadian Science Publishing

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3