MOLECULAR ELEMENT METHOD (MEM) FOR MULTI-SCALE MODELING AND SIMULATIONS OF NANO/MICRO-SYSTEMS

Author:

Behdinan Kamran1,Xu Yigui1,Fawaz Zouheir1

Affiliation:

1. Department of Aerospace Engineering, Ryerson University 350 Victoria Street, Toronto, Ontario, Canada, M5B 2K3

Abstract

A new technique called Molecular Element Method is proposed for multi-scale modeling and simulations of nano/micro-systems. In this technique, the system is divided into molecular elements whose properties are represented by sets of equivalent physical parameters obtained from atomic information. The discrete system is solved based on continuum mechanics theories. The resultant element information from system solving is then used as an external constraint for the elements, to investigate the atomic information within, using molecular dynamics calculations. Both system properties and atomic information at local zones can be obtained accurately and efficiently in this way, A crystal of Cu having 285,883 atoms with a through the thickness hole inside is investigated using this technique. Tension stresses of the crystal and the slip of atoms around the hole’s edge are revealed corresponding to five strain loads. Compared with the results obtained from the classical molecular dynamics method, the maximum stress error is 2.7%, while the computational time is only 7.2-11.8% of that taken by the classical method.

Publisher

Canadian Science Publishing

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3