THE KINEMATIC SYNTHESIS OF STEERING MECHANISMS

Author:

Yao Jin1,Angeles Jorge2

Affiliation:

1. Department of Mechanical Engineering Sichuan Union University Chengdu P. R. CHINA

2. Department of Mechanical Engineering & Centre for Intelligent Machines McGill University 817 Sherbrooke St. Montreal QC H3A 2K6 CANADA

Abstract

We propose a computational-kinematics approach based on elimination procedures to synthesize a steering four-bar linkage. In this regard, we aim at minimizing the root-mean square error of the synthesized linkage in meeting the steering condition over a number of linkage configurations within the linkage range of motion. A minimization problem is thus formulated, whose normality conditions lead to two polynomial equations in two unknown design variables. Upon eliminating one of these two variables, a monovariate polynomial equation is obtained, whose roots yield all locally-optimum linkages. From these roots, the global optimum, as well as unfeasible local optima, are readily identified. The global optimum, however, turns out to be impractical because of the large differences in its link lengths, which we refer to as dimensional unbalance. To cope with this drawback, we use a kinematically-equivalent focal mechanism, i.e., a six-bar linkage with an input-output function identical to that of the four-bar linkage. Given that the synthesized linkage requires a rotational input, as opposed to most existing steering linkages, which require a translational input, we propose a spherical four-bar linkage to drive the steering linkage. The spherical linkage is synthesized so as to yield a speed reduction as close as possible to 2:1 and to have a maximum transmission quality.

Publisher

Canadian Science Publishing

Subject

Mechanical Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3