Closed-loop control of surface preparation for metallizing fiber-reinforced polymer composites

Author:

Shokri Shiva1,Sedigh Pooria1ORCID,Hojjati Mehdi1ORCID,Kwok Tsz Ho1ORCID

Affiliation:

1. Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, Montreal, QC, Canada

Abstract

This study introduces a novel approach to enhance the surface properties of fiber-reinforced polymer composites through thermal spray coatings, utilizing a metal mesh as an anchor to improve coating adhesion. A critical step in this process is achieving optimal exposure of the metal mesh by sandblasting prior to coating. To address this challenge, we propose a closed-loop control system designed to inspect and blast parts effectively. Our method leverages top-view microscope images as inputs, employing a convolutional neural network (CNN) to correlate these images with the corresponding exposure levels of the metal mesh, measured via a destructive method. Upon training, the CNN model accurately estimates the exposure level solely from the top-view images, facilitating real-time feedback to guide subsequent sandblasting operations. Unlike traditional manual inspection methods, which demand expertise and experience, our automated approach streamlines the inspection process using a cost-effective portable digital microscope. Experimental findings validate the efficacy of our method in successfully discerning surface preparation status with an accuracy rate of 95% and demonstrate its practical utility in closed-loop control. Our study not only offers a robust methodology for quantifying surface preparation data but also presents a significant advancement in automating the inspection process. Moreover, the broader implications of our approach extend to various manufacturing sectors, where defect detection and closed-loop control are crucial for optimizing production efficiency and product quality.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Canadian Science Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3