Effect of composition and microstructure on the rusting of MS rebars and ultimately their impact on mechanical behavior

Author:

Shazad Atif1,Jadoon Junaid2,Uzair Muhammad1ORCID,Akhtar Maaz1,Shakoor Abdul2,Muzamil Muhammad1ORCID,Sattar Mohsin3

Affiliation:

1. Mechanical Engineering Department, NED University of Engineering & Technology, Karachi 75270, Pakistan

2. Department of Mechanical Engineering, University of Engineering and Technology, Peshawar, Pakistan

3. Department of Mechanical Engineering, Universiti Teknologi Petronas, Seri Iskandar, 32610, Perak, Malaysia

Abstract

Rebar steel is used for reinforcement to aid concrete because concrete does not sustain tension. Thermomechanical treatment is an advanced manufacturing technique for rebar production, but rusting problems emerged in the local steel industry. Raw material sampling included ingot casting (IC) and continuous casting (CC). IC samples corroded more frequently than CC samples. Spectroscopy indicated a small amount of chromium and an improper ratio of manganese to sulfur in IC samples. The improper ratio of manganese to sulfur in IC samples promoted hot cracking at grain boundaries, which resulted in intergranular corrosion. The microstructural results of G40 (air cooled) and G60 (water cooled) showed ferrite and martensite in different proportions. The deformed ferrite in G60 indicated inclination to corrosion, and no proper stable layer of martensite was found. The percentage of martensite was not enough to retaliate against intergranular corrosion. Highly pressurized water initiated pitting corrosion due to the formation of small pits on the surface. Tensile testing revealed 10% reduction in ultimate strength, 8% reduction in yield strength, and 30% reduction in percentage of elongation of corroded samples. Environmental study revealed that the humidity level in the industry was greater than in the laboratory space. High values of SO x and NO x emission revealed the involvement of the environment in the deterioration of the product surface.

Publisher

Canadian Science Publishing

Subject

Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3