Kinematic sensitivity analysis of a novel micro-mechanism for displacement amplification

Author:

Iqbal Sohail1,Malik Afzaal1,Shakoor Rana I2

Affiliation:

1. Department of Mechanical and Aerospace Engineering, IAA, Air University, Islamabad 46000, Pakistan.

2. Department of Mechatronics Engineering, Air University, Islamabad 46000, Pakistan.

Abstract

This research article presents the design and analysis of a displacement amplification mechanism based on a microelectromechanical system (MEMS). The mechanism, compared to generic displacement mechanisms, is smaller and capable of amplifying input displacement by a factor of 6.8. Finite element analysis (FEA) is performed with commercial software Intellisuite using the extended finite element method (XFEM) technique to verify the analytical results from mathematical models. Kinematic response and kinematic sensitivity analysis of the amplification mechanism are computationally carried out to predict the effect of different geometric parameters on the performance of the proposed mechanism. The analysis predicts that length and angle of flexure are the two key geometric parameters significantly affecting the amplification factor (AF), with length having a direct relationship and angle of flexure having an inverse relationship. A significant increase in the AF is seen for a flexure length up to 550 μm and angle below 5°. Based on the sensitivity analysis, the design is optimized, and geometric parameters are finalized. Modal analysis and dynamic simulations, including direct-integration transient and steady-state modal analysis, are performed on the mechanism under the application of 25 g. The mechanism can be integrated with any conventional actuating mechanism in a microsystem where the amplification of a small displacement at the output is desired.

Publisher

Canadian Science Publishing

Subject

Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3