Affiliation:
1. Henan University of Science and Technology, 74623, Luoyang, China;
Abstract
An optimized multi-scale reverse discrete entropy (RDE, OMRDE) method for feature extraction is proposed to address the lack of effective feature extraction and detection methods for combining harvester assembly fault inspection. This method is used to extract vibration signal features from the harvester. A fault diagnostic method is designed to verify the efficiency of the associated methods. First, a comparative study of RDE, multi-scale inverse RDE (MRDE), and OMRDE was performed using simulated signals to verify the effectiveness of OMRDE. Second, the FSTPSO–VMD method was used to decompose the vibration signal of the combine harvester assembly fault, and the OMRDE, MRDE, and fuzzy entropy were compared and analyzed. The actual feature extraction effect of the three entropy functions reached the highest classification accuracy (88.5%) after using OMRDE to extract features. Finally, a fusion feature set is constructed to further improve the classification accuracy, and the LSSVM classifier is further optimized through FSTPSO. Analytical results show that the FSTPSO–LSSVM classifier constructed in this work adopts the fused feature with an accuracy of 93%, which is better than other common methods and verifies the validity of the fault diagnostic model. Therefore, the performance of the OMRDE proposed in this work is better than those of MRDE and MRDE. The proposed fault diagnostic model can realize accurate classification of the combine harvester assembly fault detection.
Publisher
Canadian Science Publishing
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献