Feature selection and framework design toward data-driven predictive sustainability assessment and optimization for additive manufacturing

Author:

Naser Ahmed Z.1ORCID,Defersha Fantahun1,Yang Sheng1ORCID

Affiliation:

1. School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada

Abstract

Additive manufacturing (AM) is considered an innovative technology to fabricate goods with green characteristics. In comparison to conventional manufacturing approaches, AM technologies have shown promising results in enhancing sustainability in production systems. Various research has been conducted to assess the environmental impacts of AM based on the well-known life cycle assessment (LCA) framework. However, this approach requires intensive domain knowledge to build the environmental impact model and interpret the findings. This knowledge barrier may cause delays and challenges in the selection of the optimal design and process parameters for additively manufactured parts. Such challenges can be particularly prevalent during the early product design and planning stages. As such, the research community demands an automated LCA tool to support AM toward elevated sustainability. To achieve this ambitious goal, this paper particularly investigates the fundamental question—“What are the key influential parameters that pose an impact on the environmental sustainability of AM?” Thus, this paper proposes a methodological framework for identifying the key influential parameters for AM. The framework was demonstrated by taking the fused filament fabrication process as a case study. Through instantiating various parts within the proposed framework and conducting LCA on over 200 AM instances, followed by correlation analysis, the key influential parameters were identified. Consequently, a data-driven predictive sustainability assessment and optimization framework was developed by integrating the identified influential features.

Funder

Natural Science and Engineering Research Council of Canada

Publisher

Canadian Science Publishing

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3