Affiliation:
1. Department of Energy and Mechanical Engineering, Gyeongsang National University, Korea
2. Institute of Marine Industry, Gyeongsang National University, Gyeongsang National University, Korea
Abstract
This study presents a numerical simulation of heat transfer and flow characteristics of the heat exchanger in molten carbonate fuel cell system. In this study, the actual size of the heat exchanger was simulated in order to avoid errors that can occur from the scale-down test, also the simulation gas (air) was verified with the heat duty of 800,000 kcal/hr. It is analyzed by using a commercial heat exchanger calculation code based upon the test condition. It is found that a reasonable agreement is obtained from comparison between the predicted results and the measured data. Furthermore, the verified similarity was presented in this analysis. In particular, the simulation gas used for the shell side service for the heat exchanger is obtained through the combustion calculation, i.e. by using a flow rate of the fuel gas. In addition, the performance of the heat exchanger is predicted under various conditions in the fuel cell operation conditions by the numerical model.
Publisher
Canadian Science Publishing