Online identification and feed-forward compensation of nonlinear friction in servo system based on RBF neural network model

Author:

Zhu Yuheng1,Li Xuewei1ORCID,Kong Lingyi2,Zhang Taihao1,Zheng Guangming1

Affiliation:

1. Department of Mechanical Engineering, Shandong University of Technology, Zibo 255000, China

2. China National Heavy Duty Truck Group Co. Ltd., Jinan 250000, China

Abstract

In this paper, an online identification and compensation method of nonlinear friction based on radial basis function (RBF) neural network model is proposed for the influence of nonlinear friction on machining accuracy in the low speed process of servo feed system of CNC machine tools. First, a three-layer single-input-output RBF neural network model is established for describing the nonlinear friction of servo feeding system. Second, the neural network online learning algorithm is improved based on adaptive gain, which improves the stability and accuracy of the algorithm. Finally, experiments were carried out on a three-axis milling machine to compensate the friction in the servo feed system in real time based on the online identification results. The results show that the method can effectively improve the online identification accuracy and convergence rate, and effectively improved the low-speed performance of the servo feed system.

Funder

National Natural Science Foundation of China

Innovation capability enhancement project of the technology-oriented small and medium enterprises in Shandong province

Publisher

Canadian Science Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3